
CS 151 Review #4

Review

Relational Operators Relational Operators Relational Operators Relational Operators

You have already seen that the statement total=5 is an assignment statement; that is, the
integer 5 is placed in the variable called total . Nothing relevant to our everyday understanding
of equality is present here. So how do we deal with equality in a program? How about greater
than or less than? C++ allows the programmer to compare numeric values using relational
operators. They are the following:

> Greater than

< Less than
> = Greater than or equal to
< = Less than or equal to
= = Equal to
! = Not equal to

An expression of the form num1 > num2 is called a relational expression. Note that it does not assert that
num1 is greater than num2. It actually tests to see if this is true. So relational expressions are boolean. Their value
must be either true or false. The statement cost!=9 is false if cost has value 9 and true otherwise. Consider the
following code:

int years;
years = 6; // assignment statement years is assig ned the value of 6
years == 5; // relational expression, not an assig nment statement
years = years - 1; // assignment statement
years == 5; // relational expression

In this sequence the first occurrence of years==5 is a false statement whereas the second occurrence is true.
Can you see why?

The The The The if Statement Statement Statement Statement

Sometimes we may only want a portion of code executed under certain conditions. To do so, we use conditional
statements. For example, if you are writing a payroll program to compute wages, then the program should only
compute overtime pay if the employee worked more than 40 hours in a given week. Otherwise, when the program
is executed the overtime portion of the code should be bypassed. An if statement is one kind of conditional
statement.

Consider the following program:

Sample Program 4.1:

// This program prints "You Pass" if a student's av erage is 60 or higher and
// prints "You Fail" otherwise

#include <iostream>
using namespace std:

int main()
{

float average;

cout << "Input your average" << endl;
cin >> average;

CS 151 Review #4

if (average >= 60) // note the use of a relationa l operator
 cout << "You Pass" << endl;

if (average < 60)
 cout << "You Fail" << endl;

return 0;

}

Note that it is not possible for this program to print out both “You Pass” and “You Fail”. Only one of the if
statements will be executed. Later we will see a way to write this program without using 2 if statements.

If you want to conditionally execute several statements using if , the following syntax is required:

if (expression)
{
 statement_1;
 statement_2;
 .
 .
 statement_n;
}

Note the curly braces surrounding the set of statements to be conditionally executed.

The The The The if/else Statement Statement Statement Statement

In Sample Program 4.1 we used two if statements. A more elegant approach would be to use the if/else
statement as follows:

if (average >= 60)
 cout << "You Pass" << endl;
else
 cout << "You Fail" << endl;

In every if/else statement the program can take only one of two possible paths. Multiple statements can be
handled using curly braces in the same way as the if statement.

The The The The if/else if Statement Statement Statement Statement

The if/else statement works well if there are only two possible paths to follow. However, what if there are
more than two possibilities? For example, suppose we need to decide what kind of vacation to take based on a
yearly work bonus:

if the bonus is less than $1,000, we set up a tent and eat hot dogs in the back yard

if the bonus is less than $10,000 and greater than or equal to $1,000, we go to Disney World

if the bonus is $10,000, we go to Hawaii

We could code this using the if/else if statement as follows:

float bonus;

cout << "Please input the amount of your yearly bon us" << endl;
cin >> bonus;

CS 151 Review #4

if (bonus < 1000)
 cout << "Another vacation eating hot dogs on th e lawn" << endl;

else if (bonus < 10000)
 cout << "Off to Disney World!" << endl;

else if (bonus == 10000)
 cout << "Lets go to Hawaii!" << endl;

Can you explain why the first else if conditional statement does not require a greater than or equal to 1000
condition?

In general we can use as many else if expressions as needed to solve a given problem.

The Trailing The Trailing The Trailing The Trailing else

What happens in the code above if the bonus entered is greater than $10,000? Actually, nothing will happen since
none of the conditional expressions are true in this case. Sometimes it is advantageous to add a final or trailing
else at the end of a chain of if/else if statements to handle “all other cases.” For example, we could
modify the code to read:

if (bonus < 1000)

cout << "Another vacation on the lawn" << endl;
else if (bonus < 10000)

cout << "Off to Disney World!" << endl;
else if (bonus == 10000)

cout << "Lets go to Hawaii!" << endl;
else
{

cout << bonus << " is not a valid bonus" << endl;
cout << "Please run the program again with valid da ta" << endl;

} // Note the necessary use of the curly brackets h ere

Of course, few would complain about a bonus greater than $10,000 and the Hawaii trip could still be done on this
budget. However, if the maximum possible bonus is $10,000, then the trailing else will let the user know that an
illegal value has been entered.

Nested Nested Nested Nested if Statements Statements Statements Statements

Often programmers use an if statement within another if statement. For example, suppose a software
engineering company wants to screen applicants first for experienced programmers and second for C++
programmers specifically. One possible program is the following:

Sample Program 4.2:

#include <iostream>
using namespace std;

int main()
{
 char programmer, cPlusPlus;

cout << "Before we consider your application, answe r the following"
 << endl;

 cout << " yes (enter Y) or no (enter N)" << endl;
 cout << "Are you a computer programmer?" << end l;

 cin >> programmer;

CS 151 Review #4

 if (programmer == 'Y')
 {

 cout << "Do you program in C++?" << endl;
 cin >> cPlusPlus;

 if (cPlusPlus == 'Y')
 cout << " You look like a promising candid ate for employment"
 << endl;
 else if (cPlusPlus == 'N')
 cout << " You need to learn C++ before fur ther consideration"
 << endl;
 else
 cout << " You must enter Y or N" << endl;
 }

 else if (programmer == 'N')
 cout << " You are not currently qualified for employment" << endl;

 else
 cout << " You must enter Y or N" << endl;

 return 0;

}

Note how C++ programmers are identified using a nested if statement. Also note how the trailing else is used
to detect invalid input.

Logical OperatorsLogical OperatorsLogical OperatorsLogical Operators

By using relational operators C++ programmers can create relational expressions. Programmers can also combine
truth values into a single expression by using logical operators. For example, instead of a statement such as “if it
is sunny, then we will go outside,” one may use a statement such as “if it is sunny and it is warm, then we will go
outside.” Note that this statement has two smaller statements “it is sunny” and “it is warm” joined by the AND
logical operator. To evaluate to true , both the sunny and warm requirements must be met.

The NOT operator negates a single statement. For example, “it is sunny” can be negated by “it is not sunny.”

The OR operator is similar to the AND in that it connects two statements. However, there is an ambiguity about
the meaning of the word or in English. In the statement “tonight at 8:00 I will go to the concert in the park or I
will go to the stadium to see the ball game,” the word or is exclusive. That is, I can go to the concert or to the game,
but not both. However, in the statement “I need to draw an ace or a king to have a good poker hand,” the word or
is inclusive. In other words, I can draw a king, an ace, or even both, and I will have a good hand. So we have a
choice to make. Let A and B be two statements. A OR B could mean A or B but not both. It could also mean A or
B or both. In computer science we use the second meaning of the word or. For example, in the statement “if it is
sunny or it is warm, then I will go outside,” there are three scenarios where I will go outside: if it is sunny but not
warm, if it is warm but not sunny, or if it is sunny and warm.

The syntax used by C++ for logical operators is the following:

AND &&
OR | |
NOT !

Consider the following:

if (dollars <= 0 || !(accountActive))
 cout << " You may not withdraw money from the b ank";

CS 151 Review #4

It is good programming practice to enclose the operand after the (!) operator in parentheses. Unexpected things
can happen in complicated expressions if you do not. When will this code execute the cout statement? What type
of variable do you think accountActive is?

The The The The switch Statement Statement Statement Statement

We have already seen how if statements can affect the branching of a program during execution. Another way to
do this is using the switch statement. It is also a conditional statement. The switch statement uses the value
of an integer expression to determine which group of statements to branch through. The sample program below
illustrates the syntax.

Sample Program 4.3:

#include <iostream>
using namespace std;

int main()
{

char grade;

cout << "What grade did you earn in Programming I?" << endl;
cin >> grade;

switch(grade) // This is where the switch stateme nt begins
{
 case 'A':cout << "an A - excellent work!" << en dl;
 break;
 case 'B':cout << "you got a B - good job" << en dl;
 break;
 case 'C':cout << "earning a C is satisfactory" << endl;
 break;
 case 'D':cout << "while D is passing, there is a problem" << endl;
 break;
 case 'F':cout << "you failed - better luck next time" << endl;
 break;
 default:cout << "You did not enter an A, B, C, D, or F" << endl;
}

return 0;

}

Note the use of the curly braces that enclose the cases and the use of break ; after each case . Also, consider the
variable grade . It is defined as a character data type and the case statements have character arguments such as
'B' . This seems to contradict what we said above, namely that the switch statement uses the value of integer
expressions to determine branching. However, this apparent contradiction is resolved by the compiler
automatically converting character data into the integer data type. Finally, notice the role of the default
statement. The default branch is followed if none of the case expressions match the given switch
expression.

CS 151 Review #4

Character & string comparisons Character & string comparisons Character & string comparisons Character & string comparisons

So far, relational operators have been used to compare numeric constants and variables. Characters and string
objects can also be compared with the same operators. For example:

char letter = 'F';
string word = "passed";

switch(letter)
{

case 'A': cout << "Your grade is A." << endl;
 break;
case 'B': cout << "Your grade is B." << endl;
 break;
case 'C: cout << "Your grade is C." << endl;
 break;
case 'D': cout << "Your grade is D." << endl;
 break;
case 'F': word = "failed";
 break;
default: cout << "You did not enter an A,B,C,D or F " << endl;

}

if (word == "passed")
 cout << "You passed" << endl;
else
 cout << "You failed" << endl;

What is printed ?

Review #4 CS 151 SEC# ___________ Name _____________________________

Fill-in-the-Blank Questions

1. The two possible values for a relational expression are _____________ and _____________.

2. C++ uses the _______________ symbol to represent the AND operator.

3. The switch statement and if statements are examples of _________________statements.

4. In C++ is the meaning of the OR logical operator inclusive or exclusive? __________________

5. C++ uses the ________________ symbol to represent the OR operator.

6. It is good programming practice to do what to the operand after the NOT operator?

7. The switch statement uses the value of a(n) ________________________ expression to

determine which group of statements to branch through.

8. In a switch statement the ________________________ branch is followed if none of the

case expressions match the given switch expression.

9. C++ allows the programmer to compare numeric values using ________________________.

10. The C++ symbol for equality is __________________________________.

